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Abstract We define an ‘information wave function’, W (g). We underline the role of risk-
neutral probabilities in financial non-arbitrage. We argue how a change in the probabilities
based on W (g) can induce arbitrage.
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1 Introduction

The concept of arbitrage is an important concept in financial economics. Many financial
institutions make sizable profits on the basis of ‘arbitrage’. What is arbitrage? The absence
of arbitrage is equivalent to saying, as per Higham [11], that “(t)here is never an opportunity
to make a risk-free profit that gives a greater return than that provided by the interest from a
bank deposit.” We can think of the bank deposit interest as being equal to the risk-free rate
of return. Why a risk-free rate of return? The return is risk-free (and thus low) because the
risk of losing (or receiving less back than what was put in on the bank deposit originally)
is very low. We differentiate the risk-free rate of return from the risky rate of return (or
the return in excess of the risk-free rate of return) when we consider risky investments (i.e.
investments which may give us back less money (or much more money) than what was put
in originally). So any risk-free profit which has a higher return than this risk-free rate of
return is an arbitrage profit. The key requirement for obtaining an arbitrage profit is that the
profit is risk-free (i.e. no risk has been taken to realize such profit).

Assets in financial economics are theoretically priced via a theorem, also known as the
non-arbitrage theorem. This theorem allows for the generation of benchmark prices which
exist under no arbitrage. In this paper we specify this theorem.

The contribution of this paper consists in seeing how information can be modelled, via
the use of a so called information wave function, as a trigger for generating arbitrage.
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In Sect. 2 we define and discuss the non-arbitrage theorem. In Sect. 3, we discuss the so
called information wave function and we also query why this function is to be a quantum
mechanical wave function. In Sect. 4 we show how the information wave function can be
used to induce arbitrage. In Sect. 5, we expand on how we can connect the non-arbitrage
theorem with Bohmian mechanics.

2 The Non-Arbitrage Theorem

In order to define the non-arbitrage theorem we need the concept of risk-neutral probability.
Those probabilities can be defined as follows [18].

Definition 2.1 Consider a probability measure Q on Q2 = {w, ws, ..., wk}, where Q is
a finite sample space containing states of the world, w;, i =1,2,..., K. We note that a
state of the world is for instance the state of the stock market: ‘bullish’ or ‘bearish’. The
probability measure Q on €2 is risk-neutral if (a) Vo; € Q2 : Q(w;) > 0 and (b) EQ[ASj] =0,
j=1,2,..., N (N indicates the number of securities), which is equivalent to EC[S (D] =
S;(0), where E OIAS ;] indicates the expectation operator on the random variable AS; under
the probability measure Q. AS; indicates the discrete change in price of security S; over
two time points (i.e. respectively S;(1) versus S;(0)). At time ¢y < #;, the value of the state
of the world at time #; is unknown.

Let us give an example of a risk-neutral probability.

Example 2.1 Consider 3Q(w;) + 6Q(w,) = 5. Can we find Q(w;) and Q(w;) > 0 so
that EC[S;(1)] = S5,(0)? Clearly, for Q(w;) = 1/3 and Q(w;) = 2/3, we obtain that
E2[S,(1)]=3(1/3) +6(2/3) =5 = S;(0). Since Q is a probability measure we must have
that Q(w;) + Q(w,) = 1 which is thus verified here.

The next theorem, also known under the name of the ‘fundamental theorem of asset pric-
ing’ or also as the ‘non-arbitrage theorem’, gives the exact conditions under which we can
guarantee no arbitrage. The theorem was originally formulated by Harrison and Kreps [7].
In this paper, we follow Etheridge [6] for the formulation of the theorem. We have adapted
the notation slightly from Etheridge [6].

Theorem 2.1 Assume there are N tradable assets (some assets may be risky and some
not) and their prices, at time ty are given by Po=(py, pi. .-, Py ). Assume there exists
a K (where K indicates the K states of the world) dimensional state price vector T =
(D1, ©s, ..., D) which is strictly positive in all coordinates. Consider the following model:

1

Po Dy, Dy, Dk

» Dy, D, Dok
=9 . + &, . +-+ Dg . )

D Dy Dy Dyk

oL -

where each N dimensional vector Dy, ..., Dk is the security price vector at time ty, if the
market is, respectively, in state 1, ..., K. For the market model described here there is no
arbitrage if and only if there is a state price vector.
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Etheridge [6] indicates that the proof of this theorem is an application of the Hahn-
Banach Separation theorem. Please see [6] or [5] for the proof. Generalizations of this the-
orem exist. See for instance [13].

It is important to stress how the risk-neutral probabilities can be constructed out of The-
orem 2.1. As per Etheridge [6] one can define the vector, m = (%{‘), %g, %8, e, 2—’;),
where each coordinate is a probability and &y = exp(—rT) is the discount rate (continu-
ously discounted) at the risk-free rate of return, r, and T is time. What is beautiful is that
under @y it is easy to show that the rate of return of a risky security is the risk-free rate of
return! This is a very useful result since all participants in the economy can agree upon the
level of the risk free-rate of return. On the contrary if the rate of return were to be the risky
rate of return then such return would depend on each individuals’ preferences for risk. In
that case there would not be unanimous agreement on what the level of the return should be.

[ j K
As per Etheridge [6] E Pmb(pé) =) i D,-j%é, wherei=1,...,Kand j=1,..., N and

e
where EPprob is the expectation operator under the risk-neutral probability measure. This
result leads us into the application of martingales in economics. We do not expand on it here.

3 The Information Wave Function and Quantum Mechanics

So far we have considered the non-arbitrage theorem. The contribution of this paper does
of course not consist in re-citing this theorem and explaining some of its intricacies. Our
contribution in this paper consists in showing how the information wave function, which
we are about to discuss, can induce, in a very explicit way, arbitrage. Let us first define the
quantum mechanical wave function (in polar form) as:

V(g.1) = R(q. 1) exp(iA(q. 1)/ ey

where R(q, t) is the amplitude function; A(q, t) is the phase function; # is the Planck con-
stant and 7 is a complex number. We note that ¢ is time. Moreover, g is position. We note that
q could be an n-dimensional vector. For instance, using the notation of the former section,
we could for instance set n = N, where the vector ¢ would then refer to the prices of N
risky and riskless assets. This vector ¢ would belong to, what Choustova [4] calls, a price
configuration space, Q = R". A space of price changes, V = R", as in Choustova [4], could
also be introduced. This leads to the existence of a price phase space: Q x V =R>. An-
other interpretation for g will be suggested, after we have covered Proposition 4.1 (please
see Sect. 4). We will then interpret g as the price of information. This price could then refer
to for instance the price of proprietary information. An n-dimensional vector g would then
refer to the prices of n proprietary information data-sources. Examples of such data sources
could be Bloomberg or Reuters. However, one may consider other data sources such as the
data sources that research departments of banks construct to help in tracing arbitrage oppor-
tunities on specific financial products.
Three immediate questions now arise:

1. Why, in the macro-scopic-financial economics context of this paper, do we need a quan-
tum mechanical wave function?

2. Why is this wave function interpreted as an information wave function?

3. What interpretation can we give to /4 in a macro-scopic-financial economics context?
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We believe that the first two questions can begin to be answered by putting forward the
argument that Bohmian mechanics (please see below in this section) is an interpretation of
quantum mechanics which is particularly useful in the financial economics context we are
presenting in this paper. In Choustova [4], the space L?(R") of square integrable functions
¥ : Q =R"'— C is considered. As we have indicated above, we could consider a price
configuration space of n-dimensional price vectors. For the purposes of this paper however,
let us consider the simple case of n = 1. We claim that W belongs to the space L*(R, d M)
of square integrable functions with respect to some measure M on R such that:

||\IJ||2:/R|\IJ(q)|2dM(q) “ . @

What is of high interest is that the measure M can describe what Choustova [4] calls
“the classical random fluctuations.” The information effects are then described by W which
is now the information wave function. The idea of using ¥ as an information wave function
originates from the work of Bohm and Hiley [3], in which the authors likened the pilot wave
function to a radio wave steering a ship on automatic pilot. The pilot wave function concept
was developed by Bohm and Hiley [1-3]. Please see also [12] for an excellent account of
Bohmian mechanics. Important work on using Bohmian mechanics in an economics context
was first started by Khrennikov [14—16] and Choustova [4]. Haven [8, 10] attempts to show
how their approach can be used in specific asset pricing contexts. The essential idea of
Bohmian mechanics, we want to follow in this paper is that the wave function steers the
particle. This idea was in some sense already contained in the work of de Broglie who
attributed two roles to the wave function (p. 16 in [12]): “not only does it determine the
likely location of a particle it also influences the location by exerting a force on the orbit.”

In order to connect Bohmian mechanics with the non-arbitrage theorem, we first need to
formulate the main proposition (Proposition 4.1) of this paper. We formulate this proposition
in the next section. Thereafter, in the last section of this paper, we will argue how we can
connect the pilot wave concept of Bohmian mechanics with the non-arbitrage theorem.

Finally, before closing this section, we need to attempt to answer the third question we
posed at the beginning of this section: how can the Planck constant, / we used in the defini-
tion of the wave function (1) be interpreted in a macro-scopic context? Khrennikov [14—16]
and Choustova [4] give interesting ideas in this regard. They propose the Planck constant
could be compared to a price scaling parameter and it could possibly be made time depen-
dent. In [8] we propose that the macro-scopic version of #, which we denote there as eg,
could be some rate of interest reflecting the inherent level of uncertainty in the economy.

4 A Change of the Information Wave Function and the Inducement of Arbitrage

The existence of arbitrage is for a large part based upon the existence of information. Hence,
changes in information will alter arbitrage opportunities. We can thus imagine a benchmark
situation where we start out under no arbitrage with a particular state of information, re-
flected by a particular functional form of the information wave function. Our goal, in the
Proposition 4.1. below, is then to show that if the state of information changes (this can for
instance be reflected by a change in the functional form of the wave function) arbitrage can
occur. Before we consider our proposition, let us consider again Theorem 2.1. We recall that

if there exists a K dimensional state price vector 3 = (D, Dy, P3, ..., Pg) which solved

the system of equations (of Theorem 2.1) there will be no arbitrage (and vice versa). We de-
. g - _ q)l c[)z (I>3 Q)K .

fined an associated probability vector @, = (<ITo’ Be By (ITO), where each coordinate
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is a probability. We have also that &y = exp(—rT) where r is the risk-free rate of return
and T is time. We must stress that we assume that the probability values making up the
probability vector ® o, (from Theorem 2.1) can be drawn from || 1> = fR W (q)|?dM(q).

Proposition 4.1 Let there exist an N -dimensional asset price vector py and a K -dimen-
sional state price vector . Let there exist a K -dimensional probability vector ®pp, =

(%, ié, %3 2’; ). Let N = K and let ®y = exp(—rT) be fixed. Let there be an infor-

mation wave function W (q) and a measure M on R. Let each of the probabilities in @y,
be drawn from ||¥|* = f]R |W(q)|2d M (q) for each of a respective set of lower and upper

bound values of the integral. Let the state prices which are in m guarantee no arbitrage.
Consider now an information wave function Y (q) which has a different functional form from
W(q) in the following way: (i) we assume that Y (q) can not be the dual wave function of
W(q);' (ii) for the same measure M on R and for the same respective set of lower and upper
bound values of the integral we used for fR |W(q)>dM (q), we write flR | (q)|>d M (q) such
that the functions | Y (q)|* and |W(q)|? can be allowed to intersect on different intervals of
their domain (of course the functions may not intersect at all) but under the constraint that
at least one probability drawn from || Y| = I |Y(q)|?d M (q) must be different from the
probabilities drawn from fR W (q)|>?dM(q). Under those conditions will the change in the
information wave function from W (q) to Y (q) trigger arbitrage.

Proof Since N = K there will be a unique state price vector T = (D, Py, ..., Pg) solv-
ing the system of equations set out by the non-arbitrage theorem. Hence, the probabilities
in ®pp = (%(‘), %(2), %(3), e 2—’5), where @y = exp(—rT) is fixed are also unique. Those
probabilities are drawn from | ¥ = fR W (q)|>?dM(q), for each of the respective set of
lower and upper bound values of the integral. Now let us consider an information wave
function of a different functional form, Y'(¢g). This information wave function can not be
the dual of the information wave function W(g). As pointed out by one of the referees
of the paper, the space of the information wave functions (with the Hermitian inner prod-
uct) is a Hilbert space. As the referee points out “Hence (by the Riesz’ Lemma) the dual
and bidual spaces are conjugate isomorphic, respectively isometrically isomorphic to the
Hilbert space.” In that case the result will not hold. Keeping this in mind, we do allow
both |W(g)|? and | Y'(g)|* to overlap on different intervals (of course the functions may not
overlap at all) in their domain. However, the overlap is permissible up to the point where
we require, for the same respective set of lower and upper bound values of the integrals,
that at least one probability value generated by || Y||> = f [T (q)|?d M (q) must be differ-
ent from any of the probability values generated by ||W|* = [ [W(q)|*d M (¢). Without
this restriction, the two different functions could possibly overlap on intervals of their do-
main in such a way to generate (for the same lower and upper bound values of the inte-
grals) exactly the same probabilities. We are now sure that the different functional form of

the information wave function will induce at least one different probability. Therefore, the
¢ﬁ . Cb*** ®*** q)***

prob — (cl>0’ [ <I>0""
ties uniquely drawn from ||T||?> = fR |T (¢)|>d M (q) will contain at least one state price in

OF = (P, OF, ..., DY) such that P # T . Hence, there must be arbitrage. O

emerging probability vector , %), which has now probabili-

We make the following three remarks.

IThanks to one of the referees for pointing out this important restriction.
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1. It is feasible to trigger arbitrage by only changing the upper and lower bound values
of the integral and keeping the functional form of the wave function unchanged. In this
sense can g be interpreted as the price of information. Since arbitrage is dependent on
information, a change in the price of information could trigger arbitrage. As we have
already indicated before (please see Sect. 3), we can think of the price of information
as the price of proprietary information for instance. A change in the functional form of
the information wave function would then indicate a change in the information about the
price of information.

2. If we allow a change can occur in the risk free interest rate, r so that @, is not fixed
anymore, then the change in the functional form of the information wave function from
W (g) to Y (g) could induce a change from the risk free rate of return r to another rate of
return, say R, which is non-risk free. The difference between R — r could be denoted as
a risk premium (or a risk discount) if respectively the difference is positive or negative.
Alternatively, we could also change T', although that would have little economic mean-
ing. Clearly, in both cases the state prices will also need to change since the probabilities
need to continue to add up to unity.

3. Our proposition will not necessarily hold for the case where N > K since in this case we
may obtain more than one set of state price vectors guaranteeing non-arbitrage. Hence,
for a different functional form Y (g) it could still be possible we find state prices guaran-
teeing non-arbitrage.

5 How Can We Connect Bohmian Mechanics to the Non-Arbitrage Theorem?

Using the conditions contained in the above Proposition 4.1 we observe, that in the case
when N = K, a change in the information wave function from W(g) to Y (g), will change

the state price vector 3 = (@, s, ..., Pg) to O™ = (O™, PI*, ..., PY*) such that
q)W gt

t £ ‘B . We need at least one state price in ®*** which is different from the state prices
in 3 From Theorem 2.1, we know that the first state price, @, multiplies all the prices con-
tained in the N dimensional asset price vector corresponding to state 1. We continue doing
this for all K states. Neftci [17] provides for an interesting interpretation of the state prices
and likens them to prices used in an insurance policy. As an example, using the notation of
Theorem 2.1, consider the price of asset 2 at time 0, which we denoted as p7. An investor
could be willing to pay ®; units for an ‘insurance policy’ that offers D,; units of currency
if state 1 (at time 1) is to occur (but the insurance pays nothing if any other state than state
1 occurs). The investor could be willing to pay @, units plus ®; units for an ‘insurance
policy’ that offers D5, units of currency if state 2 (at time 1) is to occur and D5, units of
currency if state 1 (at time 1) is to occur (but the insurance pays nothing if any other state
than states 1 and 2 occur). If the investor wants to insure that he gets a payoff no matter what
state occurs, then he will be willing to pay an ‘insurance policy’ of ®; + &, + - - + Dg.

In order to connect our theory with Bohmian mechanics we would need to introduce the
idea of a continuous state space. We would then, in light of the above, have a continuum of
‘insurance policy’ prices. In a Bohmian mechanics environment, we would have a contin-
uum of information prices, ¢ and the information wave functions would change following
the Schrodinger partial differential equation. So the information about the information prices
changes as well as the information prices themselves. Those changes will then affect the ‘in-
surance policy’ prices.
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So we could in physics terms, imagine there exists a smooth information price trajectory
which is traced out by the Newton-Bohm equation:

d’q(t) V(g 90(q)
m - - )
dt? dq dq

3

subject to the initial conditions that ¢(t = 0) = go and ¢’(t =0) = q(/, , where g is the in-

d2q()
dr?

is the partial derivative of the real potential towards the information

formation price at ¢+ = 0 and q(/) is momentum at t = 0. We note that m is mass and

. . 3
is acceleration; — Vig)

dq
price and —%{;") is the partial derivative of the quantum potential towards the information

price. We note that m, the real potential V and the quantum potential Q, have already been
interpreted economically in the work by Khrennikov [14-16], Choustova [4] and Haven
[8-10]. In Bohmian mechanics, since the quantum potential Q, depends on the wave func-
tion (via the amplitude function of the wave function) we can say the wave function steers
the particle. Thus, in the context we have now described, the information about the price
of information (i.e. the information wave function) steers the information prices. Moreover,
it seems reasonable to claim that the smooth information price trajectory on the prices of
information would also trigger a trajectory of ‘insurance policy’ prices.

In summary, we have obtained, via the use of the information wave function, a natural
device by which we can induce either arbitrage or form a risk premium (or risk discount).
Those two financial phenomena are essential in asset pricing and hence we can begin to see
the importance of the information wave function in an asset pricing context.
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